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Abstract
The surface magnetic phase transition of a double-exchange model for metallic manganites is
studied using a Schwinger-boson mean-field method. About three unit-cells wide surface layers
are identified. The magnetic moment in these layers decreases more rapidly than that in the bulk
when the temperature is increased. This behavior is consistent with experimental observations.
We also discuss the implication of this behavior on the tunneling magnetoresistance effect using
manganites and possible improvement of the magnetoresistance effect near the bulk Curie
temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heterostructures involving transition-metal oxides have been
attracting interest [1–5] because they provide a playground to
explore new and useful functionalities that are not realized
in the bulk. In addition, these are supposed to become
fundamental building blocks of electronic devices utilizing a
variety of properties of transition-metal oxides [6]. Among
these oxides, perovskite manganites are promising candidates
for spintronic devices due to their high spin polarization,
high ferromagnetic Curie temperature (TC), and the colossal
magnetoresistance effect.

One potential application of perovskite manganites is
as a tunneling magnetoresistance (TMR) junction [7, 8].
The TMR junction consists of two ferromagnetic metallic
leads separated by an insulating barrier. The conductance
across the barrier can be changed by changing the relative
orientation of magnetic moments of the two leads. Since high
polarization in the ferromagnetic metallic leads is required to
obtain a large magnetoresistance ratio (MR), highly-polarized
perovskite manganites could serve as ideal ferromagnetic
leads. Furthermore, electronic devices typically function at
room temperature, therefore high TC materials are particularly
favorable, such as La1−x Srx MnO3 with 0.2 < x < 0.5 where
TC reaches 350 K [9].

Several attempts have been made to fabricate perovskite
TMR junctions [10–12]. A very large MR was measured at

low temperature, consistent with half-metallicity. However, the
MR decreases rapidly and disappears well below TC [12]. On
the basis of spin-resolved photoemission spectroscopy, it was
suggested that the rapid decrease of MR is due to the stronger
temperature dependence of the spin polarization at interfaces
than in the bulk [13].

Surface magnetism has been theoretically studied within a
classical Heisenberg model using the numerical Monte Carlo
(MC) technique. The surface polarization was shown to
decrease more rapidly than that in the bulk [14, 15]. More
recently, the interfacial phase transition of the double-exchange
(DE) model for manganites was studied by the dynamical-
mean-field method [16] and the MC method [17]. Since
the dynamical-mean-field theory (DMFT) neglects spatial
correlations [18], it is expected to become less accurate in low-
dimensional systems, and therefore at surfaces and interfaces.
The MC requires a very large system to investigate surface or
interface phase transitions. In fact, one-dimensional systems
were used in [17]. Therefore, the difference between the bulk
magnetism and the interface magnetism remains unresolved.

In this paper, we investigate the surface magnetic phase
transition of the DE model by using an alternative technique,
the Schwinger-boson mean-field (SBMF) method. We focus
on metallic manganites possessing a relatively high TC such
as La1−x SrxMnO3 with a doping concentration of x ∼ 0.3.
The SBMF method has had success in describing the behavior
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of the quantum Heisenberg model in low dimensions [19]
satisfying the Mermin–Wagner theorem [20]. The SBMF
method was also applied to the bulk DE model [21, 22]. Since
the SBMF method correctly describes low-dimensional spin
systems, it is also expected to provide a suitable description
of surface and interface magnetic behavior.

The paper is organized as follows. In section 2, the
theoretical model and the formalism are outlined. In section 3,
we present the numerical results, and in section 4, we discuss
the implication on the TMR effect and summarize.

2. Model and formalism

Let us start by setting up our theoretical model. Perovskite
manganites are known to exhibit a variety of phenomena
including the colossal magnetoresistance effect, charge/orbital
orderings and nanoscale inhomogeneity. In order to understand
all these phenomena, many effects must be considered. The
kinetics of eg electrons HK and the Hund coupling (between
the eg electrons and t2g spins) HH are the key ingredients
in generating the DE interaction, resulting in metallic
ferromagnetic states. In addition, there are electron–electron
interactions He−e, orbital degrees of freedom, electron–lattice
interactions He−l (Jahn–Teller coupling is also included here),
and chemical inhomogeneity. Including all the effects is
certainly necessary to investigate the complicated multiphase
behavior of manganites. On the other hand, our main interest
is the surface magnetic behavior of high TC manganites.
Although the quantitative agreement between theory and
experiment remains incomplete, the characteristic behavior of
high TC manganites can be understood based on the simple DE
model [23, 24]. Furthermore at present, detailed information
on the surface structure is not available, although recent work
suggests that the surface layer of La1−x Srx MnO3 is a (La, Sr)O
plane [25]. Therefore, we focus on the effect which highlights
the difference between the bulk and the surface most: smaller
coordination at the surface, by terminating the perfect cubic
lattice at the [001] plane. For simplicity, we consider a single-
orbital DE model, which reproduces many of the properties of
metallic La1−x SrxMnO3 [23], with infinite Hund coupling. We
will also present a brief discussion on the orbital polarization
and disorder at the surface in terms of the transfer anisotropy.
Since the theoretical model is rather simple, our discussion will
be done on the qualitative level.

The Hamiltonian for the DE model is written as H =
−t

∑
〈i j〉σ (s

†
iσ s jσ f †

i f j + H.c.). Here, t is the nearest-neighbor
transfer, siσ the spinor boson (Schwinger boson) with the
local constraint

∑
σ s†

iσ siσ = 1 representing the rotation
of spin space, and fi the spinless fermion representing an
electron whose spin is parallel to the local moment �Si =
S

∑
αβ s†

iα �σαβsiβ . The Lagrangian for this system becomes

L =
∑

i

f̄i (∂τ − μ) fi +
∑

iσ

( f̄i fi + 2S)s∗
iσ ∂τ siσ

− t
∑

〈i j〉σ

(
s∗

iσ s jσ f̄i f j + H.c.
)

+
∑

i

λi(τ )

( ∑

σ

|siσ |2 − 1

)

, (1)

where τ is the imaginary time, μ is the chemical potential
for spinless fermions, 2S originates from the Berry phase of
a localized spin �Si , and the last term represents the local
constraint

∑
σ |siσ |2 = 1 with the Lagrange multiplier λi (τ ).

At this stage, we introduce a mean-field approximation:
ni = 〈 f̄i fi 〉, χ s

i j = 〈 f̄i f j 〉, and χ f
i j = ∑

σ 〈s∗
iσ s jσ 〉, and

relax the local constraint to the global one by neglecting the
τ dependence of λ. By rescaling the spinor boson siσ as√

2S + ni siσ ⇒ siσ , we obtain the mean-field Lagrangians
for fermions and bosons

L f =
∑

i

f̄i (∂τ − μ) fi − t

2

∑

〈i j〉

⎛

⎝
χ

f
i j f̄i f j

√
Stot

i Stot
j

+ H.c.

⎞

⎠ , (2)

and

Ls =
∑

iσ

s∗
iσ ∂τ siσ − t

2

∑

〈i j〉σ

⎛

⎝
χ s

i j s
∗
iσ s jσ

√
Stot

i Stot
j

+ H.c.

⎞

⎠

+
∑

i

λi

( ∑

σ

|siσ |2 − 2Stot
i

)

, (3)

respectively, with Stot
i = S + ni/2. The order parameter χ f is

defined in the same way as before but now using the rescaled
bosons. The local density of spinor bosons is now 2Stot

i . In
this SBMF, χ f

i j represents the nearest-neighbor ferromagnetic
correlation, and the ordered moment M is represented by the
Bose condensation of spinors N0 as M = N0/2.

We solve the self-consistency equations numerically for
an N layer system with the open-boundary condition in the z
direction and the periodic-boundary condition in the xy plane.
Thus, χ f and χ s are dependent on the layer coordinate z and
the interplane bond, and λ on z. In this mean-field theory, an
additional phase transition appears above TC associated with
the order parameters χ f,s . Since this phase transition is an
artifact of the present decoupling scheme, we focus on the
temperature range below TC. The most difficult part lies in
fixing {λi} so that the constraint

∑
σ |siσ |2 = 2Stot

i is satisfied
at each layer. Note,

∑
σ |siσ |2 at each layer depends on all

λs, and the simple bisection method does not work. Here,
we apply the conjugate gradient algorithm and minimize the
function 	({λi}) = ∑N

l=1 | ∑σ |slσ |2 − 2Stot
l |.

As an example, we show the results of λi and
∑

σ |slσ |2
in figure 1 and order parameters χ s and χ f in figure 2.
The magnetization profile corresponding to this choice of
parameters is shown in figure 3. The Lagrange multiplier
λ depends on the layer index z and temperature T , while
the boson density remains unchanged, indicating the accuracy
of the conjugate gradient algorithm and applicability of the
present Schwinger-boson method for spatially inhomogeneous
systems. The typical error in the constraint was found to be
less than 0.5% at each layer, and the error in χ s and χ f is
much smaller.

Another point to note is that our system is two
dimensional. Therefore, strictly speaking, there is no Bose
condensation (no magnetic ordering) at finite temperature
unless there exists spin anisotropy. In this work, we
discretize the momentum space and consider the lowest-energy
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Figure 1. Layer dependent Lagrange multiplier λ for the 20-layer
system with a uniform transfer intensity, localized spin S = 3/2, and
average carrier density n = 0.5. Kinks at T ∼ 0.34t indicate the
spinor Bose condensation, i.e., the ferromagnetic transition. The
right axis shows the mean boson density at each layer, showing that
the numerical error originating from the conjugate gradient algorithm
is small.

subband at (kx, ky) = (0, 0) with the wavefunction ψ0 =
∑

σ

∑N
l=1 alslσ as the Bose condensation. This corresponds

to introducing a low-energy cutoff for spinor excitations
representing coupling with the bulk region. In the following,
we mainly take

√
2128 × √

2 128 k points in the first Brillouin
zone, so the typical cutoff energy is χ s t (	k)2 ≈ 3 × 10−5t .
The magnetic transition temperatures of the bulk system and
the layer system with N = 20 were found to agree within
∼5%. Thus, we believe that this method for a very thick system
provides a reasonable approximation of the surface behavior.
The wavefunction ψ0 determines the layer dependent spinor
condensation (the ordered magnetic moment).

In layered systems, n and Stot generally depend on the
layer index. In this work, we consider an average carrier
density n = 0.5. Particle–hole symmetry guarantees that ni

and Stot
i are uniform at all temperatures. This choice does not

Figure 3. Layer dependent magnetization M for the 20-layer DE
model as a function of temperature T using the Schwinger-boson
mean-field approximation. Left panel: surface in-plane transfer is
taken as t s

xy = t , middle panel t s
xy = 0.5t , and right panel

t s
xy = 0.25t .

lose generality as long as the system is well approximated by
the DE model. The local spin is taken as S = 3/2, therefore
Stot = 1.75.

It is worth mentioning the shortcomings of the present
SBMF method here. The bulk single-orbital DE model has
been analyzed by using the DMFT and the ferromagnetic Curie
temperature has been computed [26]. For a cubic lattice, the
DMFT with the classical t2g spins predicts TC/t ∼ 0.2 at
x = 0.5, while the SBMF gives TC/t ∼ 0.36 [27]. Thus, TC

is about a factor 2 overestimated in the latter. This is probably
because the carriers do not suffer from scattering due to the
randomly distributed (fluctuating) spins in the SBMF. Note that
the DMFT also tends to overestimate TC because it neglects
spatial correlations. In the more realistic two-band DE model
for manganites, the on-site Coulomb interaction becomes one
of the sources to reduce TC [28]. In light of these facts, we
mainly focus on the surface magnetism relative to the bulk.

Figure 2. Order parameters χ s
i j and χ f

i j for the 20-layer DE model with uniform transfer. Solid lines are in-plane components z = zi = z j ,
while broken lines are out-of-plane components z = zi − 1 = z j . The order parameter χ f converges to the bulk value more rapidly than χ s .
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Figure 4. Layer dependent magnetization M for the 20-layer DE
model at various temperatures indicated. Filled (open, crossed)
symbols are the results with the surface in-plane transfer
t s
xy = t (0.5t, 0.25t).

3. Results

Numerical results for the layer dependent magnetization of an
N = 20 layer system are shown in the left panel of figure 3
as a function of temperature. The lattice constant is taken
to be unity: surface layers are located at z = 1 and 20,
and the magnetization profile is symmetric with respect to
the center of the system at z = 10.5. Clearly, the surface
magnetization decreases faster than the bulk magnetization
with increasing temperature, but all magnetizations disappear
at the same temperature. In figure 3, many lines are on top of
each other, except for very small z. To see the layer dependence
of the magnetization more clearly, we plot the magnetization
as a function of the layer coordinate z in figure 4 for various
temperatures indicated. One can see that layers at 4 � z � 17
show roughly the same magnetization, thus about three unit-
cells wide surface layers is rather robust. Yet near TC, the
surface layer becomes thicker. Similar behavior is observed
in the MC study for the Heisenberg model [14].

Next we discuss the effect of surface condition on the
temperature dependent magnetization. Since we are using the
simple single-orbital DE model, we simulate various effects by
changing the transfer intensity around the surface layers. The
ferromagnetic Curie temperature remains about 0.34t in all
cases, indicating that N = 20 is thick enough and the surface
condition does not affect the bulk behavior.

First, we reduce the surface intraplane transfer t s
xy .

This may correspond to either the surface roughness or the
elongation of the MnO6 octahedron stabilizing the d3z2−r2

orbital in the surface layers. Results are shown in the middle
and the right panels of figures 3 and 4. In this case, the in-
plane kinetic energy of the electrons is reduced in the surface
layers. This causes rapid suppression of the magnetization.
However, coupling between the surface layers and the bulk
region induces finite magnetization on the surface, resulting
in the long tail of the magnetization curve. Even in this case,
layers at 4 � z � 17 show roughly the same magnetization.

Second, the interlayer transfer t s
z between the surface

layer and its neighboring layer is reduced. This roughly

Figure 5. Layer dependent magnetization M for the 20-layer DE
model as a function of T using the Schwinger-boson mean-field
approximation. Left panel: uniform transfer t , middle panel
t s
z = 0.5t , and right panel t s

z = 0.25t .

Figure 6. Layer dependent magnetization M for the 20-layer DE
model at various temperatures indicated. Filled (open, crossed)
symbols are the results with the surface out-of-plane transfer
t s
z = t (0.5t, 0.25t).

corresponds to the contraction of the MnO6 octahedron in the
surface layers, resulting in the increase of the dx2−y2 orbital
occupancy. Results are shown in the middle and the right
panels of figures 5 and 6. In contrast to the reduction of
intraplane transfer, strong ferromagnetic correlations remain in
the surface layers. This prevents the rapid reduction of the
surface magnetization at low temperature. With increasing
temperature, the interlayer magnetic correlation is rapidly
reduced, as can be seen in the temperature dependence of the
order parameters χ s and χ f in figure 7. Thus, the surface
layer becomes more two dimensional. Eventually, surface
magnetism disappears below the bulk TC, accompanying the
disappearance of χ s and χ f on the bonds connecting the
surface layer and its neighboring layer. Above this transition,
the rest of the system behaves like the one with ‘clean’ surfaces
located at z = 2 and 19, since the surface layers are decoupled.
The clear surface transition might be an artifact of the mean-
field approximation, and in reality the tiny magnetization
on the surface layers may survive. If the antiferromagnetic

4
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Figure 7. Order parameters χ s
i j and χ f

i j for the 20-layer DE model with the surface out-of-plane transfer t s
z = 0.25t . Solid lines are in-plane

components z = zi = z j , while broken lines are out-of-plane components z = zi − 1 = z j .

interaction between the local t2g spins (neglected in the present
calculations) is strong relative to the interplane ferromagnetic
correlation, the surface magnetic moment would change its
relative orientation to the bulk moment. In either case, the
small surface magnetic moment is expected to survive up to
the true bulk TC.

The surface magnetic moment of cubic manganites was
reported in [13]. It was shown that the surface moment is
much smaller than that in the bulk, but disappears at the bulk
TC. The experimental result seems closest to the theoretical
curve with t s

xy = 0.25t in figure 3. This indicates that the
interlayer ferromagnetic coupling remains near the surface. On
the other hand in the bilayer manganites, the surface layer does
not show a ferromagnetic moment, while the next-to-surface
layer shows almost bulk-like magnetization [29]. This situation
may correspond to the weak interlayer coupling limit. In this
case, the magnetization in the second layer is identical to that
in the ideal surface. Therefore, the magnetization is closer to
the bulk value, although it is reduced somewhat. But in the low
TC systems, more complexity would exist due to various effects
such as charge/orbital orderings absent in the present model.

4. Discussion and summary

Here, we would like to discuss how surface (interface)
magnetization influences the TMR effect. We consider
an ideal tunneling junction in which the interface between
a ferromagnetic electrode and an insulating barrier is flat.
Furthermore, the potential barrier is very high compared with
the band width inside the electrodes. Thus, the interface layer
of an electrode is equivalent to the surface layer in the previous
discussion. The important quantity characterizing a TMR
junction is the MR defined by MR = (GP − GAP)/GAP with
GP(AP) the tunneling conductance with parallel (antiparallel)
alignment of the magnetization of the electrodes1. When the
dependence of the tunneling matrix on the Fermi velocity �v is

1 There are different definitions for MR depending on how to normalize the
relative conductance.

weak and two electrodes are identical, MR is expressed as

MR = 2P2

1 − P2
, (4)

where P is the spin polarization at the Fermi level in an
electrode defined by P = (ρ↑ − ρ↓)/(ρ↑ + ρ↓) with ρσ the
density of states of electron with spin σ at the Fermi level.
Note, MR diverges when P = 1 (full polarization). Therefore,
it is not surprising to have very large MR for manganites at
low temperature, as observed experimentally [12]. In general,
the assumptions to arrive at equation (4) are not satisfied, and
one has to consider the realistic band structure in the presence
of the interfaces and the dependence of the tunneling current
on the barrier height and thickness. However, for a simple
free electron model, it was shown that the exact solution of
MR approaches the Jullière’s model as barrier thickness and
height increase [30]. Having these facts in mind, the following
discussion will be done on a qualitative level.

Figure 8 summarizes the results for MR using equation (4).
Instead of the spin polarization at the Fermi level, we use the
total polarization P = M/Stot . For the bulk double-exchange
model, this is a rather good approximation. It is clearly
shown that a smaller polarization at a surface layer reduces
MR substantially. This tendency becomes stronger when the
surface transfer is reduced. Experimental results reported
in [12] show that the MR becomes as large as 800% at
the lowest temperature, but disappears far below TC. This
can be understood by the interface magnetization, which
dominates the MR properties. Since we cannot make a direct
comparison between the absolute values of the theoretical MR
and the experimental one, let us consider the ratio between the
actual MR and the MR expected from the bulk magnetization
denoted by MRsurface and MRbulk, respectively. To compute the
experimental ratio, the MR data in figure 3(b), [12], is used for
MRsurface, and MRbulk is computed using equation (4) with M
taken from [9] for the carrier concentration x = 0.3. Here,
M is assumed to be fully saturated at the lowest temperature.
The result is presented in the inset of figure 8. It is shown
that the experimental ratio MRsurface/MRbulk is comparable

5
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Figure 8. Temperature dependence of MR computed by equation (4)
using surface magnetization (black lines, MRsurface) and bulk
magnetization (gray lines, MRbulk). Solid (dashed, dash–dotted) lines
are the results with the surface in-plane transfer t s

xy = t (0.5t, 0.25t).
Inset: the ratio between MRsurface and MRbulk. Experimental MRsurface

are taken from [12], and experimental MRbulk is estimated using
equation (4) with M from [9] for x = 0.3.

to the theoretical one for t s
xy = 0.5t at temperatures above

∼0.5TC. This may suggest that the quality of the experimental
interfaces is rather high and the complexity inherent in doped
manganites, such as charge–orbital ordering and (chemical)
phase separation, is not so important near TC. Note that
in [12] nearly optimally-doped manganites (x = 1/3) are used.
With decreasing temperature, the theoretical MR increases
and diverges at T = 0, and therefore MRsurface/MRbulk

approaches 1. On the other hand, the experimental MR
saturates at low temperature and, therefore, MRsurface/MRbulk

decreases. This indicates that, in the experiment, additional
interactions, such as the antiferromagnetic superexchange
interaction between the localized t2g spins, compete with the
DE interaction at low temperatures. The resulting canted
spin structure would reduce the ferromagnetic polarization and
suppress the divergence of MR.

Faster suppression of the surface magnetization in the
theoretical results is ascribed to the larger thermal fluctuation
of spins. To see this effect more clearly, we computed the layer
dependent spectral function Az(ω) of spinor bosons. Az(ω) is
defined as Az(ω) = − 1

π
Im

∫
dk2

(2π)2 {ω + iη − Hs(kx, ky)}−1|zz

withω a real frequency and iη a small imaginary number. Hs is
the mean-field Hamiltonian for the spinor bosons given by the
second and the third terms in Ls . Az(ω) for s↑ and s↓ have the
same spectral shape. Numerical results for N = 20 systems are
presented in figure 9. In the bulk region, χ s ∼ 0.167, so the full
band width of the boson excitation is 12χ s t/2Stot ≈ 0.573t .
As can be seen, low-energy fluctuations are largely enhanced at
surface layers z = 1 compared with those in the bulk. Even in
the uniform transfer case (surface t s

xy = t), the low-energy part
of the surface spectral function is about twice as large as that
of the bulk (z = 10). Therefore, thermal excitation of spinor
bosons has a stronger effect, resulting in the rapid suppression

Figure 9. Layer dependent spectral function of spinor bosons
computed at T = 0.01t . The small imaginary number iη with
η = 0.01χ s/2Stot ≈ 4 × 10−4t is introduced in the lattice Green’s
function. Black and gray lines are the results with the surface
in-plane transfer t s

xy = 0.5t and t , respectively. For comparison, the
spectral function at z = 10 with t s

xy = t is also shown as a gray
dashed line in the lowest panel. Inset: a magnified view in the
low-energy region.

of the magnetization. It is also shown that the spectral function
starts to develop the bulk-like shape at z ∼ 4. This explains
why surface layers are about three unit-cells wide.

The surface spectral function shown in figure 9 may
suggest a possible way to keep a large polarization at high
temperature to improve MR; thereby suppressing the low-
energy spin fluctuations. This may be achieved by, for
example, (1) creating uniaxial spin anisotropy or (2) using a
magnetic insulator with a relatively high ordering temperature
as a barrier. For (1), applying a slightly compressive strain
for manganites would work. For (2), a possible candidate
is BiFeO3 (with [111] stacking). In this case, an exchange-
bias-type effect is also expected. A parent compound of the
manganites, LaMnO3, with [001] stacking may not be helpful
because of its low Néel temperature.

The present model includes only DE interactions.
Therefore, at the lowest temperature, all spinor bosons
are condensed at (kx, ky) = (0, 0) and the ferromagnetic
moment is saturated. In reality, additional interactions
may create complexity. For example, surface polarity and
segregation [31, 25] are expected to change the surface carrier
density and reduce the ferromagnetic interaction. Therefore,
antiferromagnetic superexchange interactions between the
localized t2g spins are expected to reduce the ferromagnetic
polarization at low temperature. Further complexity, such
as polaronic effects and charge–orbital ordering would
enhance the effect of the superexchange interactions. The
present SBMF method is rather simple, and including such
complexities to the fermionic part is possible. We are
currently working on including the electron–lattice couplings
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with orbital degeneracy using a dynamical-mean-field-type
treatment to study the magnetic and metal–insulator transitions
at the surface and in thin films [32].

To summarize, we studied the surface magnetic behavior
of the double-exchange model for doped manganites using
the Schwinger-boson mean-field method. Low-energy spin
fluctuations are enhanced at the surface and the magnetic
moment is suppressed more rapidly than in the bulk.
We further considered an ideal tunneling magnetoresistance
junction consisting of two manganite leads and an insulating
barrier. The magnetoresistance ratio of such a junction is
determined by the surface polarization. Therefore, it decreases
much faster than the bulk magnetization when the temperature
is increased. A possible improvement of the MR is expected
from suppressing the low-energy spin fluctuations.
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